Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.04.07.22273545

ABSTRACT

The B.1.1.529 (omicron) variant has rapidly supplanted most other SARS-CoV-2 variants. Using microfluidics-based antibody affinity profiling (MAAP), we have recently shown that current therapeutic monoclonal antibodies exhibit a drastic loss of affinity against omicron. Here, we have characterized affinity and IgG concentration in the plasma of 39 individuals with multiple trajectories of SARS-CoV-2 infection and/or vaccination as well as in 2 subjects without vaccination or infection. Antibody affinity in patient plasma samples was similar against the wild-type, delta, and omicron variants ( K A ranges: 122±155, 159±148, 211±307 μM -1 , respectively), indicating a surprisingly broad and mature cross-clade immune response. We then determined the antibody iso- and subtypes against multiple SARS-CoV-2 spike domains and nucleoprotein. Postinfectious and vaccinated subjects showed different profiles, with IgG3 (p = 0.002) but not IgG1, IgG2 or IgG4 subtypes against the spike ectodomain being more prominent in the former group. Lastly, we found that the ELISA titers against the wildtype, delta, and omicron RBD variants correlated linearly with measured IgG concentrations (R=0.72) but not with affinity (R=0.29). These findings suggest that the wild-type and delta spike proteins induce a polyclonal immune response capable of binding the omicron spike with similar affinity. Changes in titers were primarily driven by antibody concentration, suggesting that B-cell expansion, rather than affinity maturation, dominated the response after infection or vaccination.


Subject(s)
COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.23.453327

ABSTRACT

Understanding the factors that contribute to antibody escape of SARS-CoV-2 and its variants is key for the development of drugs and vaccines that provide broad protection against a variety of virus variants. Using microfluidic diffusional sizing, we determined the dissociation constant ((KD)) for the interaction between receptor binding domains (RBDs) of SARS-CoV-2 in its original version (WT) as well as alpha and beta variants with the host-cell receptor angiotensin converting enzyme 2 (ACE2). For RBD-alpha, the ACE2-binding affinity was increased by a factor of ten when compared with RBD-WT, while ACE2-binding of RBD-beta was largely unaffected. However, when challenged with a neutralizing antibody that binds to both RBD-WT and RBD-alpha with low nanomolar (KD) values, RBD-beta displayed no binding, suggesting a substantial epitope change. In SARS-CoV-2 convalescent sera, RBD-binding antibodies showed low nanomolar affinities to both wild-type and variant RBD proteins--strikingly, the concentration of antibodies binding to RBD-beta was half that of RBD-WT and RBD-alpha, again indicating considerable epitope changes in the beta variant. Our data therefore suggests that one factor contributing to the higher transmissibility and antibody evasion of SARS-CoV-2 alpha and beta is a larger fraction of viruses that can form a complex with ACE2. However, the two variants employ different mechanisms to achieve this goal. While SARS-CoV-2 alpha RBD binds with greater affinity to ACE2 and is thus more difficult to displace from the receptor by neutralizing antibodies, RBD-beta is less accessible to antibodies due to epitope changes which increases the chances of ACE2-binding and infection.

3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.23.453352

ABSTRACT

Recent efforts in understanding the course and severity of SARS-CoV-2 infections have highlighted both potential beneficial as well as detrimental effects of cross-reactive antibodies derived from memory immunity. Specifically, due to a significant degree of sequence similarity between SARS-CoV-2 and other members of the coronavirus family, memory B-cells that emerged from previous infections with endemic human coronaviruses (HCoVs) could be re-activated upon encountering the newly emerged SARS-CoV-2, thus prompting the production of cross-reactive antibodies. Understanding the affinity and concentration of these potentially cross-reactive antibodies to the new SARS-CoV-2 antigens is therefore particularly important when assessing both existing immunity against common HCoVs and adverse effects like antibody-dependent enhancement (ADE) in COVID-19. However, these two fundamental parameters cannot easily be deconvoluted by surface-based assays like enzyme-linked immunosorbent assays (ELISAs) which are routinely used to assess cross-reactivity. Here, we have used microfluidic antibody-affinity profiling (MAAP) to quantitatively evaluate the humoral immune response in COVID-19 convalescent patients by determining both antibody affinity and concentration against spike antigens of SARS-CoV-2 directly in nine convalescent COVID-19 patient and three pre-pandemic sera that were seropositive for common HCoVs. All 12 sera contained low concentrations of high affinity antibodies against spike antigens of HCoV-NL63 and HCoV-HKU1, indicative of past exposure to these pathogens, while the affinity against the SARS-CoV-2 spike protein was lower. These results suggest that cross-reactivity as a consequence of memory re-activation upon an acute SARS-CoV-2 infection may not be a significant factor in generating immunity against SARS CoV-2.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.06.21.449211

ABSTRACT

Antiphospholipid antibodies (aPL), assumed to cause antiphospholipid syndrome (APS), are notorious for their heterogeneity and detect phospholipids and phospholipid-binding proteins. The persistent presence of Lupus anticoagulant and/or aPL against cardiolipin and/or {beta}2 glycoprotein I have been shown to be independent risk factors for vascular thrombosis and pregnancy morbidity in APS. Among others, viral infections have been proposed to trigger the production of aPL while mostly being considered non-pathogenic. Yet, the potential pathogenicity of infection-associated aPL has gained momentum since an increasing number of patients infected with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been described with coagulation abnormalities and hyperinflammation, together with the presence of aPL. Here, we present data from a multicentric, mixed-severity study including three cohorts of individuals who contracted SARS-CoV-2 as well as non-infected blood donors. We simultaneously measured 10 different criteria and non-criteria aPL (IgM and IgG) by using a line immunoassay. Further, IgG antibody response against three SARS-CoV-2 proteins was investigated using tripartite automated blood immunoassay technology. Our analyses revealed that select non-criteria aPL are enriched concomitant to or after an infection with SARS-CoV-2. Linear mixed-effect models suggest an association of aPL to prothrombin (PT) with the strength of the antibody response against SARS-CoV-2 and further influenced by SARS-CoV-2 disease severity and sex of the individuals. In conclusion, our study is the first to report an association between disease severity, anti-SARS-CoV-2 immunoreactivity and aPL against PT in patients with SARS-CoV-2.


Subject(s)
Thrombosis , Coagulation Protein Disorders , Severe Acute Respiratory Syndrome , Antiphospholipid Syndrome
5.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.20.423670

ABSTRACT

Background: Immune system conditions of the patient is a key factor in COVID-19 infection survival. A growing number of studies have focused on immunological determinants to develop better biomarkers for therapies. Aim: The dynamics of the insurgence of immunity is at the core of the both SARS-CoV-2 vaccine development and therapies. This paper addresses a fundamental question in the management of the infection: can we describe the insurgence (and the span) of immunity in COVID-19? The in-silico model developed here answers this question at individual (personalized) and population levels. We simulate the immune response to SARS-CoV-2 and analyze the impact of infecting viral load, affinity to the ACE2 receptor and age in the artificially infected population on the course of the disease. Methods: We use a stochastic agent-based immune simulation platform to construct a virtual cohort of infected individuals with age-dependent varying degree of immune competence. We use a parameter setting to reproduce known inter-patient variability and general epidemiological statistics. Results: We reproduce in-silico a number of clinical observations and we identify critical factors in the statistical evolution of the infection. In particular we evidence the importance of the humoral response over the cytotoxic response and find that the antibody titers measured after day 25 from the infection is a prognostic factor for determining the clinical outcome of the infection. Our modeling framework uses COVID-19 infection to demonstrate the actionable effectiveness of simulating the immune response at individual and population levels. The model developed is able to explain and interpret observed patterns of infection and makes verifiable temporal predictions. Within the limitations imposed by the simulated environment, this work proposes in a quantitative way that the great variability observed in the patient outcomes in real life can be the mere result of subtle variability in the infecting viral load and immune competence in the population. In this work we i) show the power of model predictions, ii) identify the clinical end points that could be more suitable for computational modeling of COVID-19 immune response, iii) define the resolution and amount of data required to empower this class of models for translational medicine purposes and, iv) we exemplify how computational modeling of immune response provides an important light to discuss hypothesis and design new experiments.


Subject(s)
COVID-19
6.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.20.422820

ABSTRACT

The humoral immune response plays a key role in suppressing the pathogenesis of SARS-CoV-2. The molecular determinants underlying the neutralization of the virus remain, however, incompletely understood. Here, we show that the ability of antibodies to disrupt the binding of the viral spike protein to the angiotensin-converting enzyme 2 (ACE2) receptor on the cell, the key molecular event initiating SARS-CoV-2 entry into host cells, is controlled by the affinity of these antibodies to the viral antigen. By using microfluidic antibody-affinity profiling, we were able to quantify the serum-antibody mediated inhibition of ACE2-spike binding in two SARS-CoV-2 seropositive individuals. Measurements to determine the affinity, concentration, and neutralization potential of antibodies were performed directly in human serum. Using this approach, we demonstrate that the level of inhibition in both samples can be quantitatively described using the binding energies of the binary interactions between the ACE2 receptor and the spike protein, and the spike protein and the neutralizing antibody. These experiments represent a new type of in-solution receptor binding competition assay, which has further potential areas of application ranging from decisions on donor selection for convalescent plasma therapy, to identification of lead candidates in therapeutic antibody development, and vaccine development.

7.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.21.423733

ABSTRACT

Although a defective vitamin D pathway has been widely suspected to be associated in SARS-CoV-2 pathobiology, the status of the vitamin D pathway and vitamin D-modulated genes in lung cells of patients infected with SARS-CoV-2 remains unknown. To understand the significance of the vitamin D pathway in SARS-CoV-2 pathobiology, computational approaches were applied to transcriptomic datasets from bronchoalveolar lavage fluid (BALF) cells of such patients or healthy individuals. Levels of vitamin D receptor, retinoid X receptor, and CYP27A1 in BALF cells of patients infected with SARS-CoV-2 were found to be reduced. Additionally, 107 differentially expressed, predominantly downregulated genes modulated by vitamin D were identified in transcriptomic datasets from patient's cells. Further analysis of differentially expressed genes provided eight novel genes with a conserved motif with vitamin D-responsive elements, implying the role of both direct and indirect mechanisms of gene expression by the dysregulated vitamin D pathway in SARS-CoV-2-infected cells. Network analysis of differentially expressed vitamin D-modulated genes identified pathways in the immune system, NF-KB;cytokine signaling, and cell cycle regulation as top predicted pathways that might be affected in the cells of such patients. In brief, the results provided computational evidence to implicate a dysregulated vitamin D pathway in the pathobiology of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Cerebrospinal Fluid Leak
8.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-34001.v1

ABSTRACT

Coronavirus disease 2019 (Covid-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as a public health emergency recently, leading to fatal respiratory failure in a number of patients. The clinical manifestation of Covid-19 is manifold, cardio-respiratory symptoms and multiorgan failure being the most critical. Anosmia was reported to be an early symptom in a significant number of Covid-19 patients and is frequently the only symptom without underlying nasal congestion. Here we present neuropathological work-up of olfactory epithelium and associated olfactory nerves from two patients succumbing to Covid-19, one of which was anosmic. We show that SARS-CoV-2 infection is associated with inflammation in the olfactory epithelium and leads to axonal damage in olfactory structures of the CNS - potentially explaining anosmic symptoms.


Subject(s)
Coronavirus Infections , Signs and Symptoms, Respiratory , Severe Acute Respiratory Syndrome , Olfaction Disorders , COVID-19 , Inflammation , Respiratory Insufficiency , Basal Ganglia Diseases
9.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.05.31.20118554

ABSTRACT

We describe the evolution of severe acute respiratory coronavirus 2 (SARS-CoV-2) seroprevalence in the greater area of Zurich, Switzerland, a region that has been only mildly hit by the pandemic in spite of hosting an international airport hub and a highly mobile population. Seroprevalence studies in low-prevalence settings require large sample sizes and high-specificity methodologies. To address this particular challenge, we developed a Tripartite Automated Blood Immunoassay to assess the IgG response against three SARS-CoV-2 proteins on approximately 40'000 samples from university hospital patients and healthy blood donors. The seroprevalence increased in March 2020 (0.3%; CI95%: 0.1% - 0.5%) in the cohort of the hospital patients but rapidly plateaued in April at 1.1-1.3%, with a slight drop in June, then decreased in July to 0.3-0.7%. Seropositive samples were confirmed with Western Blotting and liquid-phase binding assays. Employing a dynamic transmission model that describes SARS-CoV-2 transmission and seroconversion in the general population of the Canton of Zurich, we estimated an infection fatality ratio of 0.6% (CI95%: 0.4%-0.8%). We conclude that a small proportion of the population in the greater area of Zurich has been exposed to SARS-CoV-2, with an IFR that is similar to that of other European areas. The evolution of seroprevalence points to a high effectiveness of containment measures and/or to rapid loss of humoral responses.


Subject(s)
Coronavirus Infections
10.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.21.108308

ABSTRACT

BackgroundInfection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes an acute illness termed coronavirus disease 2019 (COVID-19). Humoral immune responses likely play an important role in containing SARS-CoV-2, however, the determinants of SARS-CoV-2-specific antibody responses are unclear. MethodsUsing immunoassays specific for the SARS-CoV-2 spike protein, we determined SARS-CoV-2-specific immunoglobulin A (IgA) and immunoglobulin G (IgG) in sera and mucosal fluids of two cohorts, including patients with quantitative reverse-transcriptase polymerase chain reaction (RT-qPCR)-confirmed SARS-CoV-2 infection (n = 56; median age 61 years) with mild versus severe COVID-19, and SARS-CoV-2-exposed healthcare workers (n = 109; median age 36 years) with or without symptoms and tested negative or positive by RT-qPCR. FindingsOn average, SARS-CoV-2-specific serum IgA titers in mild COVID-19 cases became positive eight days after symptom onset and were often transient, whereas serum IgG levels remained negative or reached positive values 9-10 days after symptom onset. Conversely, patients with severe COVID-19 showed a highly significant increase of SARS-CoV-2-specific serum IgA and IgG titers as a function of duration since symptom onset, independent of patient age and comorbidities. Very high levels of SARS-CoV-2-specific serum IgA correlated with severe acute respiratory distress syndrome (ARDS). Interestingly, some of the SARS-CoV-2-exposed healthcare workers with negative SARS-CoV-2-specific IgA and IgG serum titers had detectable SARS-CoV-2-specific IgA antibodies in their nasal fluids and tears. Moreover, SARS-CoV-2-specific IgA levels in nasal fluids of these healthcare workers were inversely correlated with patient age. InterpretationThese data show that systemic IgA and IgG production against SARS-CoV-2 develops mainly in severe COVID-19, with very high IgA levels seen in patients with severe ARDS, whereas mild disease may be associated with transient serum titers of SARS-CoV-2-specific antibodies but stimulate mucosal SARS-CoV-2-specific IgA secretion. The findings suggest four grades of antibody responses dependent on COVID-19 severity.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL